Bacteroid proline catabolism affects N(2) fixation rate of drought-stressed soybeans.
نویسندگان
چکیده
In prior work, we observed that soybean (Glycine max L. cv Merr.) seeds inoculated with a mutant Bradyrhizobium japonicum strain unable to catabolize Pro (Pro dehydrogenase(-) [ProDH(-)]) resulted in plants that, when forced to depend on N(2) fixation as the sole source of nitrogen and subjected to mild drought stress, suffered twice as large a loss in seed yield as did plants inoculated with the parental strain. Here, we used a continuous gas flow system to measure H(2) evolution as a function of time and leaf water potential (Psi(L)). Since one H(2) is produced for every N(2) fixed as an obligate part of the mechanism of N(2) fixation, these measurements serve as the basis for continuous monitoring of the N(2) fixation rate. In five replicate experiments, the slope of the decline in N(2) fixation rate in response to water stress was always greater for plants inoculated with the mutant strain unable to catabolize Pro or take up H(2) (ProDH(-), hup(-)) than it was for plants inoculated with the parental strain (ProDH(+), hup(-)). In aggregate, the probability that this difference occurred by chance alone was 0.005. In combination with the earlier result, this is consistent with bacteroid catabolism of Pro synthesized in response to mild drought stress having a positive impact on N(2) fixation rate and seed yield.
منابع مشابه
Bacteroids Are Stable during Dark-Induced Senescence of Soybean Root Nodules.
Physiological and biochemical markers of metabolic competence were assayed in bacteroids isolated from root nodules of control, dark-stressed, and recovered plants of Glycine max Merr. cv ;Woodworth.' Nitrogenase-dependent acetylene reduction by the whole plant decreased to 8% of control rates after 4 days of dark stress and could not be detected in plants dark stressed for 8 days. However, in ...
متن کاملInhibition of N2 fixation in soybean is associated with elevated ureides and amino acids.
Decreased N2 fixation in soybean (Glycine max) L. Merr. during water deficits has been associated with increases in ureides and free amino acids in plant tissues, indicating a potential feedback inhibition by these compounds in response to drought. We evaluated concentrations of ureides and amino acids in leaf and nodule tissue and the concurrent change in N2 fixation in response to exogenous u...
متن کاملMetabolite Adjustments in Drought Tolerant and Sensitive Soybean Genotypes in Response to Water Stress
Soybean (Glycine max L.) is an important source of protein for human and animal nutrition, as well as a major source of vegetable oil. The soybean crop requires adequate water all through its growth period to attain its yield potential, and the lack of soil moisture at critical stages of growth profoundly impacts the productivity. In this study, utilizing (1)H NMR-based metabolite analysis comb...
متن کاملMedicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress.
Drought is one of the environmental factors most affecting crop production. Under drought, symbiotic nitrogen fixation is one of the physiological processes to first show stress responses in nodulated legumes. This inhibition process involves a number of factors whose interactions are not yet understood. This work aims to further understand changes occurring in nodules under drought stress from...
متن کاملLeaf water relations and net gas exchange responses of salinized Carrizo citrange seedlings during drought stress and recovery.
BACKGROUND AND AIMS Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. METHODS Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (sal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 136 2 شماره
صفحات -
تاریخ انتشار 2004